Understanding High BOD in Wastewater

What is wastewater?

 Wastewater, also written as waste water, is any water that has been adversely affected in quality by anthropogenic influence. Wastewater can originate from a combination of domestic, industrial, commercial or agricultural activities, surface runoff or stormwater, and from sewer inflow or infiltration.

What is "Treatment"?

- What contaminants are in the water?
- What contaminants need to be treated, changed or removed?
- What processes or combination of processes can do the work?
- How clean does the water need to be?
 - Appropriate use/reuse.
 - Complex treatment system?
 - Reuse/irrigation
 - No treatment at all?
 - Land App
 - "Straight Pipe"

Why treat wastewater?

Effects on the receiving environment

- Oxygen demand
 - Hypoxia
- Nutrient load
 - Eutrophication
- Toxic effects
 - Industrial effluents
 - Mining
- Odor

Surcharges

Reuse

What is **BOD**?

- Biochemical Oxygen Demand
 - The oxygen demand that the wastewater would exert on a receiving water body
 - There are other "oxygen demands" and subtypes
 - Chemical
 - Nitrogenous vs carbonaceous
 - Particulate vs. Soluble
 - Generally measured as a mass load or concentration

Critical Design and Process Constituents

- Flow
- Carbonaceous substrates (BOD, cBOD)
- Chemical Oxygen Demand (COD)
- Nitrogenous compounds (TKN, OrgN, NH₄-N, NO₃-N)
- Phosphorus compounds (TP)
- Total suspended solids (TSS)
- Volatile suspended solids (VSS)
- Alkalinity (CaCO₃)
- Turbidity
- pH
- Coliform (total coliform, fecal coliform, E. coli)

What is Mass Load?

- Concentration or "Waste Strength"
- Hydraulic flow

Without both, you are clapping with one hand.

8.34 x (BOD) x mGal/Day = Load (lbs)

However, for smaller flows:

8.34 x (BOD) x (Gal/day) / 1,000,000 = Load (lbs)

What is waste strength?

- Raw sewage is actually far cleaner than lvory soap...
 - Units used for measuring constituents in wastewater are mg/L or ppm
 - That is a small quantity
 - 99.44% water is quite close to accepted values for Brewery Wastewater!

What is Municipal Waste Strength?

- BOD 250-450 mg/L
- TSS 200-400 mg/L
- FOG 20-150 mg/L
- This is typical "Sewage" from residential sources.

What is High Strength Waste?

- Higher than "Municipal"
- Much greater variation in character and flows
- BOD >450 mg/L
- TSS >200 mg/L
- FOG >150 mg/L

High Strength Wastewater and Pretreatment Programs

- How high can BOD go?
 - 1000, 5000, 10,000 mg/L?
- Regulate based on total load?
 - Probably most "fair", but takes more effort
- Regulate based on concentration?
 - Possible side effect, water efficiency not incentivized
- Categories for concentration?
 - Encourages either staying in a category, or "dumping everything" once the highest category is reached.

So What?

- "It is just a little sugar water"
- "It's completely organic"
- "It isn't sewage"
- "It just ends up as food for other animals"

Examples

- Breweries
- Beverage Bottling
- Fruit and Vegetable Processing
- Meat Processing
- Milk/Dairy Processing

Brewery Wastewater

It's just a little rinse water...

- Dissolved sugars
- Alcohol
- Particulates
- Yeast
- Chemicals

Brewery Wastewater

- BOD 600-5000 mg/L
 - Side streams can be much higher!
- TSS 200-1500 mg/L
 - Side streams can be much, much higher!
- pH Lower than Neutral (typically)

- Intermittent "shock" loadings with various processes and cleaning operations.
- BOD load can exceed 20 times more load than municipal sewage on average, with spikes much, much higher!
- Breweries are typically brewing and packaging operations combined

Beverage Bottling

Beverage Bottling

- BOD 3000-7000 mg/L
 - Unique events can be enormous (can/bottle crush)
- TSS varies mg/L
 - Can vary enormously depending on application
- pH Lower than Neutral (typically) Most juices, soda, kombucha, wine, beer and other drinks are acid.
- Intermittent "shock" loadings with various processes and cleaning operations. Poor manufacturing runs are often disposed of in the system after a "crush" to reduce volume of refuse.
- BOD load can exceed 20 times more load than municipal sewage on average, with spikes much, much higher!

BOD Data (April 2016 – Dec 2016)

BRSWOOD

Fruit/Vegetable Processing

Fruit/Vegetable Processing

Meat processing

Milk/Dairy Processing

Here is something to think about...

- One can of this soda has 46 grams of sugar
- One can of soda is 12 ounces
- Let's imagine that a resident in a home that generates 200 gpd spills one can of soda per day
- Sugar is C6H12O6

One 12 ounce can of soda per day can increase the BOD load of an average household by 10%

Fundamental Processes of Waste Water Treatment

Physical/Mechanical

Biochemical

Chemical

Wastewater Treatment – Biochemical

Aerobic

- Carbon compounds + microbes
 + Oxygen =
- Carbon Dioxide +Water + More microbes
 - With available dissolved oxygen
 - Rapid, efficient, more complete

Anaerobic/Anoxic

- Without available dissolved oxygen
 - Oxidant may be Nitrate, Sulfate, etc (Anoxic)
- Slow, inefficient, incomplete at room temp
- Can produce Methane or "Biogas"
- Greater Odor Potential

Wastewater Treatment - Biochemical

Balance these 3 in the correct proportions and in the correct forms

Wastewater Treatment - Biochemical

- Without aerobic processes, the organic carbon isn't completely broken down to carbon dioxide and water
- The volume of air required and the rate that the air is supplied depend upon the wastewater characteristics
- Whether it's a large municipal activated sludge system, a brewery or an individual home system, the processes require virtually the same things.

Wastewater Treatment - Biochemical

- Maximum dissolved oxygen concentration in water at 70° F is 9.0 mg/L
- Oxygen concentration in atmospheric air is around 275 mg/L
- It takes almost 59 cubic feet of air for 1 pound of oxygen

Critical Design and Process Constituents

Flow – How much water must be treated every day?

Food – How much food is in the wastewater?

Air – What is the Oxygen requirement?

Time – How much room is there on the property? How large do the tanks need to be?

Unit Processes of Wastewater Treatment

- Grit removal
- Primary sedimentation
- Aeration
- Final sedimentation
- Disinfection
- Return to receiving
 environment

Questions?

Robert Smith

rsmith@baswood.com

