















# So What Are the Options?

- Liquid phase removal options
  - Reduce H2S in wastewater to prevent release to atmosphere.
    - Nitrate Salts
    - Iron Salts
    - Oxidizers
    - Oxygen
  - Capture sulfides to prevent release to atmosphere
    - Magnesium Hydroxide
    - Calcium Hydroxide
- Vapor phase removal options
  - Remove hydrogen sulfide by passing it through
    - Biofiltration
    - Bioscrubber
    - Carbon Adsorption
    - Wet Chemical Scrubbing



# Liquid Phase Odor Control

### Liquid phase options

- 1. Calcium nitrate
  - Bioxide and Bioxide blends from Evoqua. Two gallons Bioxide/pound H2S.
  - Aqua Hawk HSX (calcium nitrate) from Hawkins Water Group
- 2. Oxidizers
  - Hydrogen Peroxide, Chlorine. About 4 mg/L Cl2/mg/L H2S.
- 3. Oxygen Injection
- 4. Iron Salts
  - Ferric Chloride, Ferrous Chloride
- 5. pH Shift
  - Hydroxides













# Nitrate Salt Summary



### Calcium Nitrate or Sodium Nitrate and derivatives

- Very High Degree of Odor Control
  - Easy to optimize
    - Residual nitrate can be easily tested
  - Capable of preventing and removing 100% of sulfides
- Moderate Cost
- Non-Hazardous
- Basic formulations are available nationally. Some blends only available regionally.

## Bioxide – Prevention Mechanism (continued)



### The end product of microbial respiration

- 1. Oxygen → Carbon Dioxide and Water
- 2. Nitrate → Nitrogen gas
- 3. Sulfate → Hydrogen Sulfide
- The presence of calcium nitrate in anoxic wastewater prevents the formation of hydrogen sulfide by providing the microbiology with an "easier to breathe" terminal electron acceptor
- Without Nitrate:

$$-SO_4^{=} + C \rightarrow S^{=} + H_2O + CO_2$$

With Nitrate:

$$-2NO_3^- + 3C \rightarrow 3CO_2 + N_2$$

### 2017 Lift Station Corrosion Control Chemical Cost Summary

|             | Azone     | CaNO3    | Ferric  | NaOH  | Total     |
|-------------|-----------|----------|---------|-------|-----------|
| Haycreek    | \$67,153  | \$14,486 |         |       | \$81,639  |
| Pioneer     | \$19,903  | \$13,779 | \$4,229 |       | \$37,912  |
| Southport   | \$2,321   | \$1,413  |         | \$80  | \$3,814   |
| Eagle Crest | \$2,886   | \$2,856  |         | \$80  | \$5,822   |
| Airport     | \$13,352  | \$2,560  |         |       | \$15,912  |
| Total       | \$105,615 | \$35,095 | \$4,229 | \$160 | \$145,099 |

|             | \$/Gallon |
|-------------|-----------|
| 2018 Azone  | \$4.42    |
| 2018 CaNO3  | \$4.84    |
| 2018 Ferric | \$2.15    |

# Bioxide - Removal Mechanism

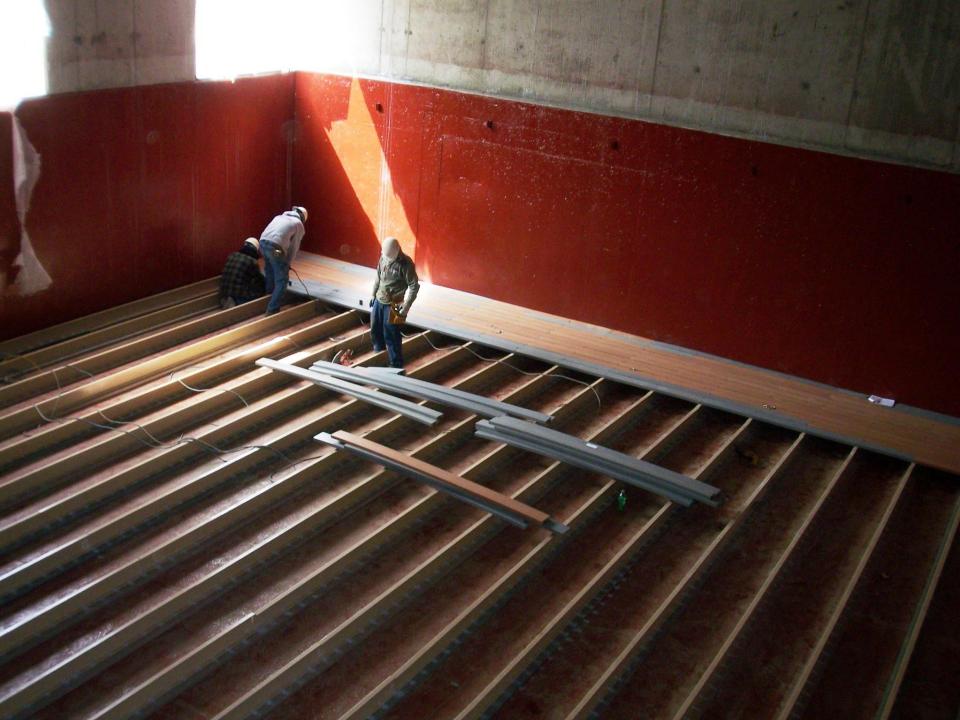
 If hydrogen sulfide is already present at the location where calcium nitrate is added, the microbiology can remove the hydrogen sulfide.

$$-8NO_3^- + 5H_2S \rightarrow 5SO_4^= + 4N_2 + 4H_2O + 2H^+$$

 The reaction requires about 90 minutes of contact time to complete

# Bioxide – Application Guideline




- Bioxide is best used:
  - At pump stations and along forcemain injection points
  - For retention times ranging from 1.5 to
    12 hours
  - When chemical safety is a concern
  - When hydrogen sulfide goal is very strict

# Iron Salt - Product Line Summary

- Iron Salts are available in a variety of blends:
  - Ferric Sulfate and Ferrous Sulfate
  - Ferric Chloride and Ferrous Chloride
- Lesser Degree of Odor Control
  - Acidity of solution drives sulfide out of solution
  - Only capable of removing existing sulfides
- Iron Salts remove sulfide from solution by combining with them and forming a solid. Precipitated metal sulfides are very insoluble
  - $Fe^{2+} + HS^{-} \rightarrow FeS + H^{+}$
  - $Fe^{2+} + 2Fe^{3+} + 4HS^{-} \rightarrow Fe_{3}S_{4} + 4H^{+}$



# Biofilter for Odor/H2S Removal



















